GEOLOGY AND GEOCHEMISTRY OF THE WARREGO Au–Cu–Bi MINE, TENNANT CREEK, NORTHERN TERRITORY, AUSTRALIA

by

M. Richard Wedekind

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Tasmania.

University of Tasmania
Hobart
1990
This thesis contains no material which has been accepted for the award of any other higher degree or graduate diploma in any tertiary institution and that, to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except when due reference is made in the text of the thesis.

M.R. Wedekind
August 1990.
ACKNOWLEDGEMENTS

Thanks to my supervisor Ross Large for initiating this project and maintaining his enthusiasm and encouragement throughout the slow gestation of this thesis. Ross’ keenness for applied research and ability to gain the support of the mining industry has been instrumental in the successful continuation of this study.

I would like to acknowledge the support provided by Peko-Wallsend Operations Limited (now North Broken Hill Peko) in providing unrestricted access to their Tennant Creek operations, logistic support in the form of transport, accommodation during field work, and some analytical costs. Brian Williams of Geopoko is largely responsible for this support and it is his unflagging interest in things ‘academic’ that has allowed this project to flourish and whose comments and criticisms kept me on the straight and narrow. Bob Love (the man at the scene) has been my toughest critic when it comes to the arm waving, as Senior Geologist in Tennant Creek with considerable underground experience at Warrego, he was able to defuse some of my wilder assertions.

John Walshe (A.N.U.) has shown considerable interest in the progress of this thesis, always ready to discuss a problem and suggest the unthinkable.

Staff and students of the Geology Department in the University of Tasmania are gratefully acknowledged for their assistance and friendship. Colleagues and friends who have directly provided help and assistance throughout this study include Ron Berry, Tony Crawford, Garry Davidson, Bruce Gemmell, Brian Gulson, Brian Harrold, Terry Hoschke, Dave Huston, Peter McGoldrick, Terry Quinlan, Mark Rattenbury, Joe Stoltz and Khin Zaw.

Superb technical assistance has been provided by Wis Jablonski (microprobe), Mike Power Snr. and Mike Power Jnr. (mass spectrometry), Phil Robinson (geochemical analyses) and Simon Stephens (polished thin sections).

June Pongratz has produced many of the diagrams, and is responsible for the final presentation and production of this thesis.

Special thanks go to my parents for their support and encouragement throughout the course of this study. The occasional R & R in Sydney was much appreciated.

Finally a debt is owed to Sharon, not only has she been prepared to endure this thesis, providing constant support and encouragement, she has actively helped through-
out with sample preparation and analysis, drafting, sample cataloguing, data input and proof reading.

Support for this work was provided by a Commonwealth Scholarship and a collaborative University of Tasmania-Industry research grant.
CONTENTS

Acknowledgements i
List of Figures viii
List of Tables xiii
List of Plates xiv

ABSTRACT xv

Chapter One — INTRODUCTION
1.1 Mining History of Development of the Goldfield ... 1
1.2 Warrego Mine — Discovery and Development ... 4
1.3 General Statement of Aims and Methods ... 5
1.4 Terminology ... 7

Chapter Two — LOCAL GEOLOGY
2.1 Introduction .. 8
2.2 Regional Geology .. 9
 - Intrusive Rocks .. 11
 - Structure .. 12
 - Ironstone Lodes ... 13
 - Synthesis ... 13
2.3 Warrego Geology .. 15
 - Sequence West of the Footwall Fault ... 15
 - Sequence East of the Footwall Fault .. 18
 - Sediments ... 18
 - Quartz Porphyry .. 21
 - Quartz Feldspar Porphyry .. 25
 - Dykes ... 25
 - Veins ... 26
2.4 Conditions of Contact Metamorphism ... 26
2.5 Origin of the Porphyries ... 27
2.6 Correlation with the Warramunga Group .. 31
2.7 Environment of Deposition of the Warramunga Group 32

Chapter Three — WARREGO OREBODY
3.1 Introduction ... 34
3.2 Shape and Attitude of the Lodes .. 43
3.3 Relationship of the No. 1 and No. 3 Orebodies .. 43
3.4 Mineral Assemblages and Zonation .. 45
 - Stringer Mineralisation/Chlorite Alteration 45
 - Magnetite-Chlorite .. 48
 - Magnetite-Sulphide and Quartz-Magnetite-Sulphide 50
 - Quartz-Magnetite .. 51
 - Massive Magnetite .. 53
3.5 Discussion ... 53
 Controls on Lode Localisation .. 53
 Relationship of Ironstone Lode Formation and Economic Mineralisation ... 54

Chapter Four — STRUCTURE

4.1 Introduction ... 56
4.2 Aims and Methods of this Study 57
4.3 Structural Elements in the Warrego Mine 58
 The Footwall Fault .. 58
 Bedding .. 59
 Cleavage .. 59
 Kink Bands ... 62
 Sulphide Banding .. 62
 Faults ... 62
 Dykes and Granite Related Veins 63
4.4 Original orientation of the Warrego orebody 63
4.5 Discussion ... 66
4.6 Summary ... 67

Chapter Five — METAL ZONATION 69

5.1 Introduction ... 69
5.2 Section 8340N — Copper Orebody 71
 Gold ... 71
 Copper ... 71
 Bismuth .. 71
 Zonation .. 76
5.3 Section 8140N — Gold Pod ... 76
 Gold ... 76
 Copper ... 77
 Bismuth .. 77
 Zonation .. 77
5.4 Section 8060N — Copper/Gold Orebody 78
 Gold ... 78
 Copper ... 78
 Bismuth .. 78
 Zonation .. 78
5.5 Section 7980N — Gold Pod ... 79
 Gold ... 79
 Copper ... 79
 Bismuth .. 80
 Zonation .. 80
5.6 Metal Zonation on an Orebody Scale 80
5.7 Trace Element Zonation .. 82
 Iron .. 84
 Gold ... 84
 Copper and Sulphur ... 86
 Molybdenum .. 89
 Bismuth, Lead, and Antimony 89
 Selenium ... 90
 Uranium ... 93
 Zinc .. 93
 Rubidium ... 95
 Strontium ... 95
 Tungsten .. 98
5.8 Summary and Discussion ... 98
Chapter Six — PETROGRAPHY AND PARAGENESIS

6.1 Introduction ... 102
6.2 Magnetite .. 102
 Petrography .. 102
 Paragenesis and Formation of the Magnetite Lode 106
6.3 Quartz ... 113
 Petrography .. 113
 Paragenesis .. 114
6.4 Chlorite .. 116
 Petrography .. 117
 Chemistry ... 118
 Discussion ... 123
6.5 Muscovite .. 128
6.6 Gold ... 129
6.7 Chalcopyrite ... 136
 Petrography .. 136
 Paragenesis .. 137
6.8 Hematite ... 137
 Paragenesis .. 138
6.9 Pyrite ... 138
 Paragenesis .. 143
6.10 Marcasite–Pyrrhotite .. 143
 Petrography .. 143
 Paragenesis .. 144
6.11 Bismuth Sulphosalts ... 145
 Petrography .. 146
 Chemistry of Bismuth Sulphosalts 149
 Paragenesis .. 151
6.12 Carrollite ... 153
6.13 Minor Minerals of Restricted Association 154
 Tourmaline .. 154
 Paracostibite–Famatinite ... 155
 Sphalerite ... 156
6.14 Discussion ... 156

Chapter Seven — GEOCHEMISTRY AND ALTERATION

7.1 Introduction ... 159
7.2 Sediments and Porphyries ... 159
7.3 Tectonic Setting .. 170
7.4 Dykes ... 173
7.5 Granite-Related Veins .. 174
7.6 Ironstone Lode ... 174
7.7 Alteration ... 176
 Host Rocks .. 176
 Ironstone Lodes .. 183
7.8 Rare Earth Elements .. 186
7.9 Discussion ... 193
7.10 Summary ... 196
Chapter Eight — STABLE ISOTOPES

8.1 Introduction ... 198
8.2 Sulphur Isotopes .. 198
 Zonation ... 200
 Geothermometry ... 207
 Other Mines .. 210
 Discussion .. 210
8.3 Hydrogen and Oxygen Isotopes .. 216
 Zonation ... 216
 Geothermometry ... 219
 Explorer 28 .. 221
 Discussion .. 223
 Fluid Source .. 223

Chapter Nine — THERMODYNAMIC MODELLING OF THE FORMATION OF THE WARREGO OREBODY

9.1 Introduction ... 231
9.2 Fluid Characteristics ... 231
 Temperature ... 231
 Salinity ... 233
 pH ... 234
 Pressure ... 236
 Sulphur Content .. 236
9.3 Chlorite as an Indicator of Mineralisation Conditions 239
 Chlorite Geothermometer ... 240
 Sulphur and Oxygen Fugacity Determination 241
 Six Component Chlorite Solid Solution Model 243
 Predictions of the Conditions of Chlorite Formation 244
 Temperature .. 245
 Estimation of f_{O_2} and f_{S_2} 247
9.4 Variation of Physicochemical Conditions 250
 ^{34}S .. 250
 Selenium/Sulphur Ratio .. 252
 Discussion .. 253
9.5 Metal Solubility .. 254
 Iron .. 254
 Copper ... 256
 Gold .. 256
9.6 Quartz Solubility ... 259
9.7 Fluid Unmixing .. 261
9.8 Discussion of Conditions of Ore Formation 261

Chapter Ten — SUMMARY AND MODEL OF FORMATION

10.1 Introduction ... 264
10.2 Depositional Environment ... 264
10.3 Time Constraints ... 265
10.4 Shape and Orientation of the Ironstone Lodes 267
10.5 Alteration ... 268
10.6 Zonation within the Ironstone Lode 269
10.7 Constraints on Mineralisation Conditions 270
10.8 Source of Metals and Fluids .. 271
 Lead Isotopes ... 271
 Stable Isotopes ... 273
 Trace Element Abundances .. 274
 Hydrothermal Fluids and Source Volumes 278
 Discussion .. 278
10.9 Model for Ironstone Lode Formation and Mineralisation 280
 Ironstone Lode Formation .. 281
 Economic Mineralisation ... 287
10.10 Comparison with Other Deposits ... 289
 Ironstone Lodes ... 289
 Economic Mineralisation ... 291
10.11 Areas for Further Research ... 293

REFERENCES .. 294

APPENDICES
A — Catalogue of Samples .. 308
B — Diamond Drillhole 9/814/12 .. 328
C — XRF Analyses ... 332
D — Electron Microprobe Analyses ... 341
E — Calculated Gains and Losses ... 359
F — Stable Isotopes ... 365
G — Thermodynamic Data .. 376
H — Explorer 28 ... 378
I — Controls on High-Grade Gold Mineralization at Tennant Creek, Northern
 Territory, Australia by M. Richard Wedekind, Ross R. Large and Brian T. Williams.
ABSTRACT

The recently closed Warrego Au–Cu–Bi mine located 51 km west of the town of Tennant Creek in the Northern Territory, has produced in excess of 1.2 million ounces of gold, 80,000 tonnes of copper and 10,000 tonnes of bismuth to make it the largest producer of these three commodities in the Tennant Creek goldfield. As with all economic mineralisation in the goldfield, ore is hosted by magnetite-rich, ellipsoidal pipes (ironstone lodes) which also comprise variable proportions of quartz and chlorite. Economic mineralisation (chalcopyrite, bismuthinite and native gold) is located in fractures within the ironstone lode, and is clearly related to an event that post-dates ironstone formation.

The ironstone lodes are hosted by Lower Proterozoic turbidites of the Warramunga Group which comprise poorly sorted, immature sediments that retain the distinctive trace element compositions of two felsic source regions. The similarity in composition and age (~1870 Ma) of the sediments, a quartz porphyry which forms the immediate hangingwall to the ironstone lodes, and the Tennant Creek Granite, suggests that they are all consanguineous. The porphyry has been interpreted as a sill that was intruded prior to lithification and folding of the Warramunga Group (McPhie, 1990), and as such, preceded ironstone lode formation and mineralisation. The Warrego Granite outcrops less than 1 km from the Warrego mine, and the effect of contact metamorphism is strongly evident as the overprinting of cleavage and hydrothermal alteration associated with mineralisation by cordierite, biotite and andalusite porphyroblasts. Conditions of contact metamorphism are calculated to have been between 500° and 550°C and < 2.5 kbar. Extensive recrystallisation of quartz and sulphide minerals within the ironstone lodes has masked paragenetic relationships and destroyed fluid inclusion evidence of the conditions of mineralisation.

Compared to the typically uniform attitudes observed elsewhere in the goldfield, the Warrego ironstone lodes have an unusual plunging attitude, and the sediment and cleavage orientations in the Warrego area are highly anomalous. A simple 90° anticlockwise rotation about a horizontal axis of the block hosting the Warrego mine restores structural elements to typical goldfield attitudes, and the ironstone lode to a horizontal,
east-west alignment where alteration is now concentrated below the lode. Rotation of the block during intrusion of the Warrego Granite is suggested.

Ironstone lode formation is localised at the lower contact of the quartz porphyry which is believed to have acted as an impermeable barrier to the flow of hydrothermal fluids. Fluids appear to have been channelled to the site of deposition by a cleavage-parallel fault generated during folding of the relatively rigid porphyry, and then migrated laterally below the contact, progressively replacing the sediments with chlorite, magnetite and quartz. Textural and trace element data are consistent with a replacement model of lode formation, although some open space filling is likely. Reaction of hydrothermal fluids with cooler more oxidised waters appears to be the most likely method of promoting magnetite deposition, which was initially localised as a front against the relatively unaltered sediments. Continuous fracturing and infilling of this zone by quartz and magnetite during lode formation has resulted in the observed zonation from a magnetite core to an outer quartz-magnetite rim.

Evolution of the system through the tapping of deeper, hotter and more reduced fluids is associated with the subsequent introduction of economic mineralisation. This evolution of the system is possibly related to the intrusion of granite at depth and subsequent establishment of a convecting hydrothermal system. A direct magmatic contribution to the fluid in the form of fluids and/or metals cannot be ruled out.

Two styles of mineralisation are evident:

1. The copper orebodies are characterised by a sulphide-rich assemblage comprising chalcopyrite, pyrite, pyrite/marcasite (after pyrrhotite) and cobalt-rich phases localised within the brecciated core of the ironstone lode. An outer zone of relatively barren quartz-magnetite surrounds the mineralised core. This zonation and mineral assemblage is virtually identical to that reported for the Peko mine (Whittle, 1966).

2. Localised within two distinct zones on the footwall side of the ironstone lodes, a sulphide-poor, chloride- and muscovite-rich mineral assemblage is characteristic of that described in the Juno mine (Large, 1974, 1975). Similarly there is a well-developed zonation in metals (Au → Bi → Cu), bismuth sulphosalts (decreasing Se/Pb), and mineralogy (magnetite–chlorite–muscovite → magnetite sulphide → quartz–magnetite).

Both styles of mineralisation fill fractures without evidence of replacement or alteration of the ironstone lode.

The two styles of mineralisation are interpreted to result from the late-stage overprinting of the copper-rich assemblage by the gold pods which is associated with the oxidation of pyrrhotite. Support for this interpretation is derived from the mixed sulphur isotope signature throughout the ironstone lode, and different chlorite chemistry in the two assemblages. Recrystallisation associated with the intrusion of the Warrego Granite has destroyed textural evidence which might support this interpretation.
Oxygen and hydrogen isotope results suggest that the fluid source for both ironstone lode formation and mineralisation was formation waters. A consistent difference in isotopic composition between barren and mineralised systems results from a 100°C temperature difference between the two stages which is in agreement with fluid inclusion evidence. Lead and sulphur isotopes, and trace element modelling indicate that although relatively localised leaching of the Warramunga Group is sufficient to produce the ironstone lodes, leaching of significantly larger volumes of rocks is required to produce the observed metal abundances.

Fluid inclusion evidence in other mineralised ironstone lodes consistently indicates phase separation occurred with economic mineralisation, and a model whereby pressure release associated with fracturing of the ironstone lode has resulted in destabilisation of metal complexes in solution to promote their rapid deposition is preferred.